JOURNAL OF THE OPTICAL SOCIETY OF AMERICA VOLUME 38, NUMBER 10 OCTOBER, 1948

The Measurement of the Velocity of Light by Signals Sent in One Direction
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The problem of measuring the velocity of light by signals sent in one direction, instead of the
usual methed, by signals sent out and back, is studied. This requires two clocks, and the
necessary steps to set the two clocks are discussed. It is found desirable to distinguish between
“velocity” in its elementary and traditional sense, and the “rod-clock-quotient” directly ob-
rained by measurement with rods and clocks experiencing the Fitzgerald-Larmor-Lorentz
contractions, The precise formula derived for the one-way measurement of the velocity of fight
involves two rod-clock-quotients. The use of one-way light signal measurements in the Lorentz
transformations and the Special Theory of Relativity is discussed.

INTRODUCTION of transit is measured by a single “fixed"” clock.

SIN CE the time of Galileo terrestrial measure- This has been a tacit recognition of the diffi-
ments of the velocity of light have been culty of insuring the exact uniformity of rate
made by out-and-back signals, whereby the time and identity of setting of two separated clocks.
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With the development of precision crystal clocks
the measurement of the velocity of light by
sending signals in one direction, timed by two
separate clocks, could probably now be carried
out with a fair degree of accuracy. While there
appears to be no call to undertake such a meas-
urement, the theory of the experiment presents
some features of interest, with bearings on some
fundamental questions in the defining and no-
menclature of physical quantities, and hence
deserves attention. In particular the problem
emphasizes the importance of differentiating be-
tween various uses of the word ‘“‘velocity' which
have caused obscurity and confusion, notably in
presentations of the Special Theory of Rela-
tivity. ’
GROUNDWORK

“Light" is here considered as a disturbance in
a transmitting medium, traveling at a definite
velocity “¢" with respect to the medium, inde-
pendent of the motion of the source with respect
to the medium.! The term “velocity” is in this
paper rigorously restricted to the ratio

distance traveled in the medium

time taken to travel the distance

where distance is measured by material rods
stationary in the medium, and time is measured
by a clock stationary in the medium.® This is
equivalent to the alternative statement that
distances and clock rates are measured by rods
and clocks unaffected by their motion through

! The frequent assertion that “the Michelson-Morley ex-
riment abolished the ether” is a piece of faulty logic.
en Maxwell predicted a positive result from the experi-
ment he did so on the basis of fweo assumptions; the first,
that the I?ht waves were transmitted through a medium,
the second, which was not realized until pointed out by
Fitzgerald, that the measuring instruments would not be
affected by motion. The nul result of the experiment proved
some assumption made in predicting a positive result to be
wrong. The experimental demonstration of the variation of
measuring instruments with motion, in exactly the way to
produce a nul result, shows that it was the second assump-
tion alone that was wrong; leaving the evidence for a
transmitting medium, as derived from aberrational and
rotational phenomena, as strong, if not stronger, than ever.
* While more than one clock may be involved in a
measurement, all clocks in a stationary medium can be
given the same rate and setting by light signals, using for
setting one-hall the transit time out and back. Hence all
clocks, being identical in indication, may be included under
the above "a" clock. question whether it is practically
possible to determine that a clock or rod is staticnary in the
medium is no bar to using such rods and clocks in de-
veloping a theoretical argument.
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the medium. This definition of velocity corre-
sponds to its original meaning in physics before
the Fitzgerald-Larmor-Lorentz contractions were
postulated or experimentally established.? By it
velocities are added arithmetically.

The Fitzgerald-Larmor-Lorentz contractions
are taken in this paper to be functions of the
velocity with respect to the medium, where velocity
is defined in the above way.* Accordingly, a rod
of stationary length J; becomes, when moving
with velocity v (as above defined)

=01 —(*/c) ]},

and a clock of stationary frequency v, assumes
the frequency
v=yo[ 1 —(v*/c?) L

MEASUREMENT OF THE VELOCITY OF LIGHT BY
SIGNALS SENT OUT AND BACK

In order to emphasize the characteristics of
one-way signal measurement, the theory of two-
way or out-and-back measurement in terms of
the above “Groundwork” should be reviewed.

In Fig. 1 let ab be the measuring platform;
ata isaclock, at b a mirror, Let W be the velocity
(in the above defined sense) of the medium past
the platform. Let D’ be the length of the plat-
form, as measured by rods laid end to end on it.
The true length, because of the F.L.L. contrac-
tion, is D'[1—(W?/c*) . For &4, the time of
transit (by a clock stationary in the medium)
of a light signal from a to b, we have

| DU-we)p

: 1
! c—W )
and similarly for the return signal,
D'[1=(W3/c) ]t
‘2- ' (2)
c+W

? The demonstration of the contraction of clock rates is
described in “An Ex’pefimental study of the rate of a
moving atomic clock,”" H. E. Ives and G, H. Stilwell, J.
Opt. Am. 28, 215 (1938), and 31, 369 (1941). For the
proof of the contraction of lengths the Kennedy-Thorndyke
experiment (Phys. Rev. 42, 400 (1932)) serves. This as-
sumed the contractions of length and showed that the nul
result of the experiment demanded that clock rates should
vary: With the just quoted positive establishment of the
clock rate variation, the Kennedy-Thorndyke experiment
proves the assumed length contraction.

For the derivation of the F.L,L. contractions in terms
of motion through the light transmitting medium from
Maxwell's radiation pressure and the conservation laws, see
“Derivation of the Lorentz transformations,” H. E, lves,
Phil. Mag. 36, 392 (1943).
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so that
2D'[1—(W?/c%)]

] ’
Now if ¢’ is the total elapsed time as read by the
clock at @, we have, from the F.L.L. contraction

I
(1= (w*/c)}
from which we have finally
c=2(D'/t"). (5)

What we have obtained is that, although the
velocity of light relative to the platform is c— W
out, and ¢— W back, the quotient of rod reading
to clock reading gives us the velocity of light
in the medium where “velocity' has the meaning
in the definition above. The F.L.L. contractions
have eliminated W.

(3)

htil=

httlee= (4)

DISTINCTION BETWEEN VELOCITY AND
ROD-CLOCK-QUOTIENT

The result just obtained, that measurements
made with clocks experiencing the F.L.L. con-
tractions do not give the velocity of light rela-
tive to the platform, brings out the necessity of
differentiating between ‘“‘velocity' as above de-
fined, and the quantity obtained directly by the
quotient of length and time measurcment.

In order to be free of all ambiguity in further
discussion, we shall, while restricting the term
“velocity’ to the definition above, designate by
a new term the quotient of distance, measured
by a rod stationary with respect to the platform,
to the interval indicated by a clock (or clocks,
as in the next section), to be used when rods and
clocks are employed which experience the F.L.L.
contractions. This we shall call the ‘‘rod-clock-
quotient,” and designate by the letter Q, using
subscripts and change of type face to indicate
the different clocks involved in any measuring
operation.

The several Q's we shall need are as follows:
Q: where a single clock, stationary on the plat-
form, is used, Q, where two clocks, stationary on
the platform, are used, ¢ where a clock, moving
with respect to the platform, is used.

In accordance with the above use of symbols,
we have, from the previous section, for the
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velocity of 'light, using out-and-back signals and
a single fixed clock

Qi=c. (6)

We shall find that this identification of ¢ and Qy,
is not parallelled in the case of one-way signals
and the corresponding Q.

MEASUREMENT OF THE VELOCITY OF LIGHT BY
SIGNALS SENT IN ONE DIRECTION

In order to measure the velecity of light by a
signal sent in one direction it is necessary to
know its time of emission at one point (g in
Fig. 1) and the time of its reception at another
(b in Fig. 1). This means that we can no longer
use one clock, we must have two, and the second
must be set to run at the same rate as the first,
and be set in some known relation to the first.
Synchronism as to rate can be maintained, when
both clocks are stationary on the platform, by
periodic signals, assuming that distance of trans-
mission does not aiter the frequency of the
signals. Similarity of setting cannot, however,
be achieved by this means, without knowing the
velocity of transmission with respect to the
platform, which of course is the ostensible pur-
pose of our measurement. Our only recourse is
to set the second clock to agree with the first at
the origin (a) and then move it to its stationary
position at the far end of the platform (b), (or,
what is equivalent, to use a third, moving, clock
to carry the setting from one stationary clock to
the other). The moved clock will have its rate
changed because of its motion, and this will
cause a change of setting. It is our next problem
to investigate this change.

Consider the clock which is to take up its
station, or to be used to set a clock, at &, as
moved from a to b at 2 uniform rate, as measured
by the number of divisicns moved over, divided
by the elapsed interval, as measured by the clock
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itself—there being no other available criterion
for time evaluation.®

Designate by ¥ the velocity (in the sense of
the above defnition) of the clock. We then
have, because of the F.L.L. contractions

D' 2 W 244
y=.1.)..=__[1_z [l_i_jﬁ], )

r 7 c? c?

In this equation D’ is the observed distance
between reference points, by rods stationary
on the platform; the distance D in the light
transmitting medium is less by the factor
[1—(W*/c*) ]}, where W is the velocity of the
medium past the platform. 7’ is the interval
indicated by the moving clock; it is less than
the time by a clock stationary in the medium by
the factor [1—(W+ V)*/2 )%

Now according to the symbols above listed

WD
L~ (W) P
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D'/t is the rod-clock-quotient ¢ for the moving
clock. Putting this in (7) and solving for V
we get

_ q[1—(W*/c%)]
[L+(g¥/c) P+ (gW/e)

(8)
and also

A=
1= (W3/e)] =]

[1+(g*/c) ]

which is the indication of the moved clock when
it reaches b, and with which we set the clock
fixed at b.

Since the clock left standing at & measures r,
the time taken by the moved clock to reach b,
as r[1—(W?/c) ]}, the difference in indication of
the two clocks, A, is

7=

v (9)

T —(W2/e) )

= (1= (W/e) ) -

DN

AN | -
(-
C’

WD
] c{0— (W’/C’)]‘

If we imagine this process carried through for
a series of clocks fixed on the platform we end
up by having an array of clocks all running
with the frequency w[1—(W?*/c*) ]}, but each
set back by an amount which is a function of its
distance, the velocity of the platform through
the medium, and the rod-clock-quotient of the
moved clock.

We can simplify the expression for A, by
inserting the value of 7 from the relation r=D/V
=D'"/¥[1—(W*/¢*)]}, taking the value of ¥V

from (8) which gives
" W W}
[ (1+5) + 2/ [o(1-) ]
2 3 c*

* This is one of the commonest ways of measuring veloc-
ity, [t is used by the mariner with his chronometer. by the
automobilist in traversing the ' ‘measured mile," and by the
train traveiler who counts telegraph poles passed in the
interval given by the watch in his hand. By it the measured
velecity of light is infinity,

(10)

¢\ b
(145
c?

and this in (10) gives

A=€'{((1+—§)*-1)+¥]. (12)

We now seek the expression for the velocity, V'
(Fig. 1), of any boedy moving uniformly with
respect to the platform, as measured by two
fixed clocks at a and b, set by the above pro-
cedure. Since V' =D/t we can obtain this by find-
ing D and ¢. For D we have D=D'[1—(W?*/c%) 4
We get ¢ from the time indicated by the clock
at b when the moving body passes it, having
passed a at the indicated time zero. This is given
by the relation

U=t[1=(W/)]t—-A

W2y b
l=(t’+A)/(1—~;) T

ar

(13)
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Substituting the value of A from (12) and
putting Q: for D'/t' we get

o)
()]

We now find the expression for the velocity of
light. For the case considered the velocity of light
with respect to the platform is ¢— W. Putting
this in place of V we get, for the rod-clock-
quotient

& (X

a constant, independent of W.

This constant, if we had performed the meas-
urement in ignorance of the F.L.L. contractions,
would have been tnterpreled as the velocity of light.
It is not equal to c.

We get the velocity of light by solving (15)
for ¢. This gives us

e=[20:(0:-)1 / [20:~4).

(14)

(16)

This formula is the goal of the present paper.
It gives the velocity of light as measured by
signals in one direction, in terms of the ob-
served quantities, namely two rod-clock-quo-
tients. These are the rod-clock-quotient Q,, in-
volving the difference of readings of the two
fixed clocks as the light signal passes them, and
the rod-clock-quotient g of the moved clock
used for setting the fixed clocks.

Again, as with the out-and-back signals, we do
not get the velocity of light with respect to the
platform (¢ W), but the velocity of light with
respect to the medium. Note that if the moved
clock is moved so slowly that ¢==0 we approxi-
mate to

C=Qz.

THE LORENTZ TRANSFORMATIONS

From the preceding section we see that the
rod-clock-quotient Qs, for a unidirectional light
signal, has the interesting property of being the
same (if a definite ¢ is adhered to) no matter
what the velocity of the body on which it is
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measured. Consequently if we initiate a light
signal at a given point in the light transmitting
medium at which the initial points of a series
of moving platforms are at that instant in co-
incidence, the spherical wave expanding in the
medium will be ascribed the same Q: on each
platform. That is, the equations describing the
wave, as set up for each platform, will have the
same form in terms of Q. as a spherical wave in
the stationary medium in terms of ¢. We can
thus set up a family of equations, applying to a
series of relatively moving bodies, in which Q, is
expressed in rod and clock measurements peculiar
to each body, and thus derive a relationship be-
tween these measurements, involving the rela-
tive measured motions of the bodies, and Q.

This is the procedure used in expositions of the
Special Theory of relativity to derive the Lorentz
transformations,®* which are, according to our
development, properly expressed in terms of Qa.
By the further step of agreeing to move the clocks
used for setting “local times" at infinitesimal
rates (9=20), Q. approximates to ¢, and the usual
form of the Lorentz transformations is obtained.
Incidentally, by adopting this convention, we
permit, as a practical substitute for the slowly
moved clock for setting purposes, the use of
light signals ascribed the (false) velocity e.

THE SPECIAL THEORY OF RELATIVITY

The Special Theory of Relativity, the formulae
of which are developed from consideration of
light signals sent in one direction, is an example
of the importance of the precise definition of the
measuring processes involved, and of the distinc-
tion here drawn between ‘‘velocity” and the
“rod-clock-quotients.” The paradox confronting
our elementary and traditional concept of velocity
by the proposition that the velocity of light is
constant, both with respect to the medium and
to a body moving through the medium, is
avoided by the analysis and nomenclature here
employed.

The “constancy of the velocity of light” which
figures in current text-book treatments of the
theory, should, according to the present analysis,
he more accurately described as fwo *"constancies’
namely of the two rod-clock-quotients @, and Q..

*W, H. Mt.Crm. Relativity Pkys:cs {Methuen, London,
and Company, Ltd. 1935), p. 8
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The rod-clock-quotient @, which is obtained
in the out-and-back measurement of light signals,
using a single cleck, has the constant value ¢,
which is the velocity of light measured by rods
and clocks stationary in the medium, or by
formulae (6) and (16). The rod-clock-quotient
Q2, which is obtained in the one-way measure-
ment of light signals, using two clocks, is a
constant for any one choice of the rate of motion
(g) of the auxiliary clock used for setting the two
fixed clocks, but varies with g, and is not in
general equal to c.

The single value for the "velocity of light”
which figures in developing the formulae of the
theory is due to the specification that the rod-
clock-quotient for one-way light signals, Qs, shall
be the same as that for out-and-back signals, Q.7
This specification (sometimes called ‘‘the adjust-
ment of constants’) turns out to mean that the
only measurement of one-way light signals which
is to be allowed is one where the clock used for
setting is moved at an infinitesimal rate. This
reservation on permissible measurements vitiates
the claim that the ‘“velocity of light” is an
“absolute’ factor in the Special Theory of
Relativity.

LIGHT SIGNALS IN ONE DIRECTION TEROUGH
A REFRACTING MEDIUM

In the foregoing we have been concerned solely
with light signals in the ether. The case where
the light is transmitted through a refracting
medium can be handled in the same manner. It
is only necessary to insert for V in Eq. (14) the
velocity of light in the refracting material, in
place of ¢— W, the velocity in the ether, as was
done in deriving Eq. (15).

7 In Einstein's original presentation he declared the value
“¢" for the velocity of light to be “firmly established by
experiment.’” This was not a legitimate citation, for he was
discussing the one-way transmission of signals, while the

only existing experimental values were those from out-and-
# measurement.
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For the velocity of light in ‘a refracting ma-
terial moving through the ether, two formulae
are available, derived from the theory of elec-
trons, one due to Lorentz,? the other to Larmor.”
The formula of Lorentz, aimed at explaining the
observed Fresnel drag coefficient, neglects all
terms in the second order of z/¢, and while
adequate for its purpose, is not suited for the
present discussion, in which the second order
terms are an essential factor. The formula of
Larmor, incorporating the F.L.L. contractions
and correct to the second order, is expressed in
the exact form here needed.

Larmor's formula for the velocity'® of light in
a refracting material, moving with velocity W
with respect to the ether, in terms of coordinates
fixed in the refracting material, is

c wry W
Vz-(l———)/(u—)
® c cu
where ¢/p is the velocity of light in the material
when stationary in the ether.!!
Putting this for V in (14) we get

= I

(17)

a constant independent of W.

'45& Drude, Lekrbuch der Optsk (lirzel, Leipzig, 1900)
p. 426.

? I. Larmor, "Aether and Matter,” (Cambridge Univer-
sity Press, 1000) p. 178.

10 Larmor uses the term “velocity” in exactly the sense
adhered to in the present paper.

U If we transform our origin of coordinates to the light
transmitting medium instead of the refracting material
we get the relation

vaw=[(1-5)/ (+2) |+ w=(E+w)/(1+2)-

This formula is commenly credited to the Special Theory
of Relativity, That the considerably earlier formula of
Larmor (17), derived from analysis of the effect of movi
charges on the velocity of electromagnetic waves throug
the surrounding ether, is identical in content, appears to
have been generally overlooked.



