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N an earlier paper! I have shown that a null

result in the Michelson-Morley experiment
can be explained on the assumption of con-
tractions of the apparatus in the ratio

[(1 —-'112/62) }]n+1 1
in the direction of motion and
[(1—2?/cHi]" 2 1

at right angles to the direction of motion. The
results of the Kennedy-Thorndyke experiment
are then explained if the clock at the origin is
altered in frequency in the ratio

[(1—02/c?)t] : 1.

The value of » in these expressions is not de-
terminable from the Michelson-Morley type of
experiment.

I consider in this paper an optical experiment
which is competent to decide the value of =.
This experiment is the observation of the fre-
quencies of the displaced lines in the Doppler
effect, as obtained for instance with canal rays.

We start with the ‘““classical’”’ formula for the
Doppler effect, which assumes frequencies to be
independent of motion. In its complete form it is

1—(vo/c) cox
e 70/¢) COS ¢ M

£ ,
1—(v,/¢) cos o

where (Fig. 1), »' is the observed frequency for
the observer on particle o, » is the natural fre-
quency of the light sources; v, and v are the
velocities of source and observer respectively,
with respect to the ether, ¢ the velocity of light,
and ¢ the angle between the axis of motion of
the (parallel) moving bodies, and the direction
of the light ray between them.?

1“Graphical Exposition of the Michelson-Morley Ex-
periment,” J. Op. Soc. Am. 27, 177 (1937).

2See Born, Einstein’'s Theory of Relativity, p. 109,
except for the factor cos .

We now modify the formula (1) in the manner
called for by the results of the Michelson-
Morley and Kennedy-Thorndyke experiments.
We note that v becomes, in terms of »g, the
frequency of the source when stationary in the
ether,

ve=n[ (1 —0v.2/c)¥]=n, (2)

and that the observed frequency is re-evaluated
in terms of the frequency of the observer’s
standard in the ratio

1/[(1—ve*/cH)¥ =, 3)

so that we have for our general Doppler effect
formula:

(1—22/c)¥ 1— (/) cos ¢
v'=v0[ ] 4)

(1—v2/e¥)? 1—(v,/c) cos 0
We shall now study the phenomena to be
expected for different values of # in the above
formula. This we shall do by taking certain
selected values, namely n=1, which corresponds
to a contraction of the Michelson-Morley appa-
ratus in the ratio 1—(2?/¢?) : 1 in the direction
of motion; and =0, which corresponds to the
contraction of the Michelson-Morley apparatus
proposed by Fitzgerald, namely in the ratio
(1—v*/c*? : 1 in the direction of motion.

The case, n=1, to be first considered, ob-
viously corresponds to the ‘‘classical”’ formula
(1). Taking that formula let us consider first
the phenomena to be expected by end-on obser-
vation of a moving light source, that is where
¢©=0 and II. For the sake of concreteness, we
shall imagine we are observing a canal-ray tube,
exhibiting in the spectroscope an undisplaced
line and a displaced line; v, is then the absolute
velocity of the canal rays, v, that of observer
and the ‘‘stationary’’ particles; v, and vo being
in the same direction. '

Putting ¢=0 we get, for the frequency of the
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Fi1G. 1. Representation of parallel moving source (s) and
observer (o) for obtaining formula for Doppler effect.

displaced line,
1—(vo/c)
1-@/o)

(1-—)(1+-—+ +-- ) (5)

=V0[1 } (vs —7’0)_‘_& (Us—vc!)j_“_].

c c [4

/

Pu‘cting'?vc for the velocity of the canal rays
relative to the observer, i.e. v, is the velocity
as calculated from the applied field, we get

Vs —TVp=1,
Uy =T+,
giving for (3)
v (vetv0) 0,
y,=v0F1+_+________+m]
L c c c
i Ve (Uc+7)0) Ve
o 1 O, :~J- ©)
L ¢ [ ¢
7);2 V6V
=v| 1 +—+—+—+-- ]
B c &
and for ¢=1I
v ol
V=%P——+—+ ] )
C

We therefore have as a first-order effect, dis-
placed lines at + and — w(v,/c), that is sym-
metrical displacements for the two directions of
observation; to these are added second-order
displacements, which introduce a lack of sym-
metry which is a function of the velocity of the
system as a whole.

Consider next the case of observation at right
angles to the direction of motion of the canal
rays. Here, due to aberration, our actual angle
of observation is cos™! (vo/¢), which put in
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formula (1), gives

. [ 1— (wﬁ/cﬂ}
11— a0/

7)02 Vsl
=v0[1—a—-———|—- .. t]
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We should therefore expect to observe a dis-
placed line, whose direction of displacement
depends on the direction of motion of the system
or of the canal rays, as either is changed.

In order to illustrate these conclusions on the
Doppler effect when #=1 the content of the
above equations is exhibited in Fig. 2, for
arbitrarily chosen values, v./c=0.1, vo/c=0.2,
and the canal-ray tube turned end for end
(changing the sign of ;). From this figure it is
evident that unsymmetrical shifts of the dis-
placed canal ray lines are to be expected, from
which the motion of the observing platform with
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F1G. 2. Frequency of displaced canal-ray line as function
0? angle of observation and direction of rays, for the case
of n=1.
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respect to the ether could be deduced. The
center of gravity of the two displaced lines,
obtained by observations at 0° and 180°, will be
displaced toward higher frequencies for canal rays
moving in the same direction as the system, and
to lower frequencies for the opposite direction.

For lateral observation, no displacement is
observed when the canal rays are viewed at the
aberration angle associated with the velocity of
the observer. Part of the unsymmetrical char-
acter of the curves in Fig. 2 is due, it will be
observed, to the second-order terms in »./c,
which arise from plotting in terms of frequencies.
The behaviors characteristic of the motion of the
system are more clearly differentiate{ if the plot
is made in terms of wave-length as is done in
Fig. 3. This plot shows that for the case of
v/c=0, the displacements are entirely sym-
metrical. For finite values of v/¢ the center of
gravity of the displaced lines is toward the blue
for one orientation of the canal-ray tube, toward
the red for the opposite orientation, by the
amount Ao(vv./c?).

We now proceed to consider the same problem
as it is modified by the choice of the value 0
for #. Formula (4) then becomes

,_uo(l— (v:2/c?))t 1—(vo/c) cos o
(1= @/?)} 1—(u./c) cos ¢

We will now consider in turn the cases discussed
above by the classical treatment:
For cos ¢=1 we have

(=) (-D(-)]
(=) (=2

i (v:—~v0) ]%

(9)

1J

| T e(1— (wers /)

_yu
1

’_1_%_ (7)0"‘1’3) ]2
L (1= (vows)/¢?)
1+ (1)3—'1)0)

c(1— (vow,/c?))

(10)

=vyg
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FiG. 3. Wave-length of displaced canal-ray line as
function of angle of observation and direction of rays, for
the case of n=1.

It becomes necessary at this point to evaluate

the term
VUs— Vo

(1~ (vgns/c))

From a previous paper? we take the result that
in a system where clock rates vary in the manner
now under consideration, this expression is a
function of the observed difference of velocities,
which becomes identical with this observed
difference, when the clocks used in observing
the passage of one body past the other are moved
infinitely slowly; (11) is thus for the latter case
simply the observed velocity of the canal rays,
as obtained for instance by the measurement of
field strength in the tube. We designate this
observed velocity by the symbol used in the
classical case, v.. We therefore have

3 14 (v./c)
=@/

3 “Light Signals on Moving Bodies as Measured by
’(Iix;u;s)ported Rods and Clocks,” J. Op. Soc. Am, 27, 263
37).

(11)

1’,

(12)
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F16. 4. Frequency of displaced canal-ray line as function
og angle of observation and direction of rays for the case
of n=0

We obtain similarly for cos ¢=—1

v'= vo—l-:—(?—c—/i—. (13)
L1— (/)]

Let us next turn our attention to observation
perpendicular to the direction of motion of the
bodies. For this case, taking into account
aberration, which makes the actual angle of
observation cos™! (vy/c), we have

(1= (/c%) *. 1—(ve?/c?)
(L= (@)} 1= (vgn,/ )

7.2\ }
=1lo(1'“-—" N
c?

’

(14)

The formula indicates that for lateral observa-
tion at apparent 90° from the direction of the
discharge the frequency is reduced.

Summarizing, we find that the frequencies of
the canal ray lines are symmetrically displaced,
except for the second-order term (1—(v.2/c%))3,
which acts to ¢ncrease the frequency as given by
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the first-order terms for ‘“‘end on’’ observation
in either direction, and to decrease it for lateral
observation. These relations are exhibited in
Fig. 4. Compared with the case for =1, the
changes in frequency are seen to be simply a
decrease for all conditions of observation by the
factor (».2/c?), from what would occur if, with
n=1, the observer were stationary in the ether.
When expressed in terms of wave-length instead
of frequency, as was done for the case of =1 in
Fig. 3, these relations reduce to a simple increase
of wave-length for all conditions of observation
in the ratio 1/(1— (?/c®))* : 1, over the station-
ary classical case.

Certain important general conclusions are
embodied in formitlae (13) and (14). We note
that the phenomena are described entirely in
terms of observed relative motions of light source
and observer. Velocities with respect to the ether
have dropped out and the phenomena are thus
invariant with motion of the system through the
ether. (It is evident, without formal proof, that
this is the case only for the value 0 for the
exponent #.) In this invariance the Doppler
effect phenomena thus become similar to the
Michelson-Morley phenomena. There is however
a vital difference in the character of this
invariance. In the case of the Michelson-
Morley experiment the function of the term
[ —(@*/®))¥]*H is to make the effect not only
invariant but null, that is, the predicted behavior
corresponds to the ‘‘classical’”’ case for the
apparatus stationary in the ether. In the Doppler
effect the result predicted is invariant, but
different from the classical case for the observer
stationary in the ether, as shown by comparing
Egs. (12), (13) and (14), with Egs. (6), (7) and
(8), with wy put equal to zero. Experiments on
canal rays, of the sort here assumed, should
therefore be capable of furnishing positive optical
evidence for the validity of the contractions
postulated by Fitzgerald, Larmor and Lorentz.*

*The crucial character of such experiments for de-
ciding between the several possibilities for explaining the
Michelson-Morley experiment (entrained ether, ballistic
character of light emission, contractions of matter in

traversing the universal pattern of radiant energy) was
pointed out by Einstein and by Ritz thirty years ago.



